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Abstract

Many natural porous geological rock formations, as well as engineered porous
structures, have fractal properties. In the present paper a new numerical method for
generating a three-dimensional porous medium with any desired probability density
function (PDF) and autocorrelation function (ACF) is presented. The well-known
Turning Bands Method (TBM) is modified to generate three-dimensional synthetic
1sotropic and anisotropic porous media with a Gaussian PDF and exponential-decay
ACF. Porous media with other PDFs and ACFs are generated with a nonlinear,
iterative PDF and ACF transformation, whereby the arbitrary PDF is converted to an
equivalent Gaussian PDF which 1s then simulated with the classical TBM. Different
3D synthetic porous media are simulated by varying the porosity and the correlation
structure of the random field. The performance of the simulations is evaluated by
checking the ensemble statistics, the mean, variance and ACF of the simulated random
field. For a Gaussian PDF an average fractal dimension of approximately 2.76 is
obtained which is in the range of values of actually measured fractal dimensions of
molecular surfaces. For a porous medium with a non-Gaussian quadratic PDF the
calculated fractal dimension appears to be consistently higher and averages 2.82. The
results show also that the fractal dimension is neither strongly dependent of the
porosity nor of the degree of anisotropy assumed.
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1 Introduction

Numerous experimental studies of the last decade have shown that many
natural porous geological rock formations, as well as engineered porous
structures, have fractal properties; i.e., they are self-similar or, more
specifically, self-affine over several length scales (cf. Avnir et al., 1984, Katz
and Thompson, 1985; Krohn and Thompson, 1986, Krohn, 1988, Bunde
and Havlin, 1991; Thompson, 1991 Adler, 1992, Dullien, 1992; Cox and
Wang, 1993). These studics show that the fractal range of a porous rock or
structure, as measured by its pore surface or its pore volume, usually starts
somewhere beneath the long-length, non-fractal Euclidean regime of the order
of the grain size and extends over several orders of magnitude to the very
short-range regime. Other experiments with wave-scattering- or surface
adsorption techniques have indicated fractal regimes down even to the
molecular level of the crystalls that form the porous aggregate (Avnir ef al.,
1984; Martin and Hurd, 1987). A fractal structure has also been observed,
on a large scale, for many natural geological and geophysical fractures,
particularly seismic fault planes (cf. Okuba and Aki, 1987), and on the
small-scale, for ruptured metal- or rock surfaces (cf. Mandelbrot et al,
1984). Numerous flow processes in a porous medium have also been found
to be fractal as well (Feder, 1988; Adler, 1992; Koch,1993; Dullien, 1992).

These studies demonstrate that the quantitative determination of the
fractality; i.e., the fractal dimension of the porous medium, is by no means of
pure theoretical interest in the fundamental physics of nature alone, but has
far-reaching practical applications in gencral soil science and subsurface
hydrology. As computer simulations of the various aspects of flow and
transport in porous medium become of ever-increasing importance, so is the
desire for an efficient numerical generation of test medium of certain
stochastic nature, with possibly, fractal character.

In spite of the many experimental and theoretical studies above on
how to quantify a fractal porous medium and on how to determine its fractal
dimension, the numerical generation of a fractal pore structure with predefined
statistical and scaling properties is somewhat scarcer. Here a new technique
for generating a three-dimensional synthetic isotropic and anisotropic porous
medium with any desired probability density function (PDF) and
autocorrelation function (ACF) is proposed. The method can easily be
implemented in large-scale stochastic simulations of flow and transport in a
porous medium to numerically test the previously established experimental
relationships between various soil properties and the fractal dimension of the
porous medium.
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2 Theory

2.1  The turning bands generation of Gaussian and non-Gaussian
random fields.

The numerical method used employed is based on a modification of the
Turning Bands Method (TBM) (Tompson et al., 1989). The TBM, starting
from a second-order stationary isotropic or anisotropic normal random
distribution Y(x) with N (0, &), and a covariance function R (t) =E [Y(x)
Y(x +t)], with v the separation distance, produces a realization of a
stationary, correlated, multi-dimensional random field by reducing a two-
or three-dimensional random field simulation to a series of one-dimensional
simulations carried out along a finite set of lines radiating from an origin and
subsequent superposition of this series.

Once an arbitrary Gaussian random field Y, (x) has been simulated
(see Sun and Koch, 1998, for details), by setting a threshold level ¥, in the
PDF, similar to the experimental sctting of the light intensity in a porous thin
section of scanning microscope (Quiblier, 1984; Krohn and Thompson,
1986, Krohn, 1988),

Ys(x) sYO pore 1)
jr k) = .
‘_r’s(x)>1fO solil

a random porous medium of given porosity Ufi,j k) can be generated. Y, is
chosen from the inverse F! of the normalized cumulative distribution
function

F(Y,) =[ “p(1)dr 2)

with p(7) the normalized Gaussian PDF. For example, for a medium with
a porosity of 0.4 (=40%), using the standard tables of the normal distribution,
the corresponding threshold value will be ¥,,=-0.255.

Sun and Koch (1998) have extended the approach above to non-
Gaussian random fields. However, in such cases both the PDF and the ACF
need to be transformed before the TBM can be used. Following an idea of
Joshi (1974), a linear transformation
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1)=Y CIR, (1) ®)
m=0

between the desired non-Gaussian ACF R,,(7) and the input Gaussian
ACF R,,(7) can be set up. The C, s are calculated from the measured PDF
p(v) of asetof thin sections through

C,=(m!) " [£(y)p(y)H (y)dy “)

where H,(y) arc the Hermite polynomials and f{y) is a nonlinear inverse
probability transformation between the Gaussian and the non-Gaussian PDF
P(). Eq. (3) can then be solved by an iterative Newton method (see Sun and
Koch, 1998, for details).

2.2 Calculation of the fractal dimension of surface area of porous media.

The surface area A, of a synthetic porous medium can be integrated by:

nx n Nz

(Blucs, s k1 eviival, sonl, ke 5)

where 0 is the surface area measuring scale, and Ufi,j,k) is the porous
indicator value (0,1) of Eq. (1). &4’ ¢’ are the increments of a space point
coordinate 1,j.k corresponding to 9, and nx,ny,nz is the total number of grid
points in cach direction.

Eq. (5) can be implemented using a chosen & as the basic surface area
measuring scale and allowing & to "walk" through the synthetic three-
dimensional sample domain. Because the surface area of the pore space in the
synthetic sample is a rough surface, as the measuring scale & 1s decreased, the
measured surface arca A, should increase in form of a certain functional
relationship. More precisely, using the classical "coastline-divider rule"
approach (Mandelbrot, 1982, Feder, 1988) for a fractal object, the relation
between the measuring pixel scale & (sq. unit) and the surface area A(d) of
the porous media s given by
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A (8) = a 5t2-D)/2 (6)

Therefore, the fractal dimension D can be determined from the slope & = (2-
D)/2 of the logarithmic plot A4, (8). One also notices from Eq. (6) that for a
fractal dimension D=2 a smooth surface will be obtained.

3 Numerical Simulations and Results

Numerous different synthetic porous media are simulated by varying the
correlation structure of the spatially correlated random field. The performance
of the simulations of the random fields was checked by calculating the
ensemble statistics, the mean, variance and the ACF of the simulated random
field. These statistical parameters provide a clue of how well the simulated
field 1s approaching the theoretical values (Tompson et al., 1989). In order to
get reasonable statistical representation about 30 Monte Carlo simulations for
each predefined statistical distribution were carried out.

Fig. 1 illustrate one typical realization of a 3D isotropic Gaussian
porous structure (porosity =50%) with correlation lengths = (3,3,3).

Fig. 2 depicts log-log graphs of the average measured surface area
A, () for different porosities as a function of the normalized measuring scale
8. The relatively straight lines obtained over the range of & investigated are
evidence for a fractal behavior, in accordance with Eq. (6). In addition, since
the slopes of these lines are more or less identical, the fractal dimensions are
invariant of the porosity assumed.

The average fractal dimension D,, computed from the line-slopes of
Fig. 2, using Eq. (6), is approximately D, =2.76. This value is within the
lower range (2.67 <D <2.92) of fractal dimensions of porous surfaces
obtained experimentally by Avnir et al. (1984) through molecular adsorption
and even closer to those obtained by Krohn and Thompson (1986) and
Krohn (1988} and for various sandstone, shales and carbonates by means
of scanning-clectron-microscopic and thin-section images.

For a porous medium with a non-Gaussian PDF, the fractal
dimension obtained for the surface arca can be different (Sun and Koch,
1998} . For example, for realizations with an exponential ACF and a non-
Gaussian, quadratic PDF Y=(x-a)?, depending on the porosities used, the
fractal dimensions calculated range from D= 2.81 to D= 2.85, with an average
D,,=2.82. The corresponding log-log graphs of A, () are plotted in Fig.3
for six different porosities. Again, the slopes of these lines are more or less



154 Computer Methods in Water Resources XII

identical for the various porositics assumed; 1.¢. the fractal dimension is rather
independent of the porosity of the structure.

The fractal dimensions D obtained from numerous realizations of
four Gaussian and one non-Gaussian pore structure with different correlation
lengths are depicted in Fig, 4 as a function of the porosity selected. In
accordance with the statement above, the lines of D are relatively flat over the
porosity range and D for the non-Gaussian case [p= (1.9,1.9,1.9) 1s
consistently higher than those obtained for the Gaussian structures. However,
the overall range of the variations of D is only between 0.1 and (.2,

The vanations of the surface arca A, as a function of the porosity for
various measuring scales & arc analyzed in Sun and Koch (1998). There
a convex functional course is obtained, whereby A, increases gradually as the
porosity is raised from zero to 50%, and decreases hereafter monotonically
again to cventually zero as the porosity is increased further to 100% (a
totally void sample). In addition, with the same sample volume and at the
same measuring scale 0, it is illustrated that synthetic porous medium with
a larger correlation scale B have a smaller surface area 4,. On the other hand,
1sotropic and anisotropic porous media with the same average correlation
scale B have roughly the same surfacc arca A,

4 Conclusions

One of major asscts of the new method of the numerical generation of a
fractal surface is that it can be applied to a three-dimensional porous medium
with an arbitrary probability density functions (PDF) and autocorrelation
function (ACF). In the casc of an isotropic or anisotropic porous media with
a Gaussian PDF the Tuming Bands Method (TBM) can be used directly. For
non-Gaussian PDF with an exponential-decay ACF, the latter has to be
transformed first through an inverse polynomial iteration procedure to an
equivalent ACF representing an Gaussian PDF, before the TBM can be
applied in the same way. Once the surface area is estimated numerically for
a given porosity, its fractal dimensions are measured by classical fractal
perimeter/area relationships. Different synthetic porous media with varying
porosities and correlation structures of the spatially correlated random field
are simulated. For a Gaussian PDF an average fractal dimension of
approximately 2.76 is obtained which 1s in the range of values of actually
measured fractal dimensions of molecular surfaces. For a porous medium with
a non-Gaussian quadratic PDF the calculated fractal dimension averages 2.82.
The results show that the average fractal dimension vary strongly neither
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with the porostty nor with the correlation length,

In spite of the versatily of the present numerical approach of the
generation of a fractal porous structure for the use in Monte-Carlo type
computer simulations of various aspects of flow and transport in a porous
medium, several reservations arc in order. The TBM program only generates
stationary, homogenous porous structures with a single, uniform porosity.
However, a real heterogenous porous media may have widely different
properties. The fractal properties of such a heterogenous porous media can
only be inferred from comparisons of numerous realizations of homogenous
anisotropic synthetic media with varied correlation structures. An accurate
statistics can then be established by following the general method presented
above; 1.e., by simulating a large number of desired porous media structures
and calculating the specific surface areas and the corresponding fractal
dimensions.
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Figure 1. A typical realization of an isotropic Gaussian porous structures
with different correlation lengths B; f=(3,3,3);
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Figure 2. I_ﬁlg-log plotof A (d)as afunctionof 0 for different porosities
¢ :

of the Gaussian PDF field with an anisotropic structure, § =(1,2.3).
D,=2.76+.05.
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Figure 3. Similar to Fig. 2, but for a non-Gaussian, quadratic PDF, ¥Y=(x-
a)?, and an isotropic, structure, p=(1.9,1.9,1.9). D_=2.82+03.
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2.76+.05) and one non-Gaussian (D, =2.82+.03) porous structures
(case p=(1.9,1.9,1.9)).

Figure 4. Fractal dimensions D versus porosity for four Gaussian (D, =



